Greetings from the Powell Center: Your browser is currently running on Internet Explorer (IE) 8 or lower version. To better view this Web site we recommend updating your browser to the most current IE Version.

John Wesley Powell Center for Analysis and Synthesis

Powell Center Products

Synthesis Centers as Critical Research Infrastructure

Powell Center Working Group Products - Mon, 06/19/2017 - 10:51
Synthesis centers offer a unique amalgam of culture, infrastructure, leadership, and support that facilitates creative discovery on issues crucial to science and society. The combination of logistical support, postdoctoral or senior fellowships, complex data management, informatics and computing capability or expertise, and most of all, opportunity for group discussion and reflection lowers the “activation energy” necessary to promote creativity and the cross-fertilization of ideas. Synthesis centers are explicitly created and operated as community-oriented infrastructure, with scholarly directions driven by the ever-changing interests and needs of an open and inclusive scientific community. The last decade has seen a rise in the number of synthesis centers globally but also the end of core federal funding for several, challenging the sustainability of the infrastructure for this key research strategy. Here, we present the history and rationale for supporting synthesis centers, integrate insights arising from two decades of experience, and explore the challenges and opportunities for long-term sustainability.

Geomorphic Responses to Dam Removal in the United States – a Two-Decade Perspective

Powell Center Working Group Products - Mon, 05/22/2017 - 11:26
Recent decades have seen a marked increase in the number of dams removed in the United States. Investigations following a number of removals are beginning to inform how, and how fast, rivers and their ecosystems respond to released sediment. Though only a few tens of studies detail physical responses to removals, common findings have begun to emerge. They include: (1) Rivers are resilient and respond quickly to dam removals, especially when removals are sudden rather than prolonged. Rivers can swiftly evacuate large fractions of reservoir sediment (≥50% within one year), especially when sediment is coarse grained (sand and gravel). The channel downstream typically takes months to years--not decades--to achieve a degree of stability within its range of natural variability. (2) Modest streamflows (<2-year return interval flows) can erode and transport large amounts of reservoir sediment. Greater streamflows commonly are needed to access remnant reservoir sediment and transport it downstream. (3) Dam height, sediment volume, and sediment caliber strongly influence downstream response to dam removal. Removals of large dams (≥10 m tall) have had longer-lasting and more widespread downstream effects than more common removals of small dams. (4) Downstream valley morphology and position of a dam within a watershed influence the distribution of released sediment. Valley confinement, downstream channel gradient, locations and depths of channel pools, locations and geometries of extant channel bars, and locations of other reservoirs all influence the downstream fate of released sediment.

Comparing potential recharge estimates from three Land Surface Models across the western US

Powell Center Working Group Products - Mon, 04/24/2017 - 09:49
Abstract

Groundwater is a major source of water in the western US. However, there are limited recharge estimates in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01% to 15% for Mosaic, 3.2% to 42% for Noah, and 6.7% to 31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge in data limited regions.

Urgent need for warming experiments in tropical forests

Powell Center Working Group Products - Thu, 04/06/2017 - 10:48
Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most powerful and urgent way forward in order to improve our understanding of tropical forest responses to climate change.

Iterative ecological forecasting: Needs, opportunities, and challenges

Powell Center Working Group Products - Thu, 03/16/2017 - 12:24
A fundamental environmental challenge facing humanity in the 21st century and beyond is predicting the impacts of global environmental change. This challenge is complicated by the fact that we live on a non-stationary, unreplicated planet that is rapidly moving outside the envelope of natural variability into an historical non-analog world. In other words, while the past helps inform us about how the world has worked, it may no longer be the relevant frame of reference for management, conservation, and sustainability. In this future world the two questions at the foundation of sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect this trajectory?” These are, at their heart, questions about ecological forecasting...

[continue reading]

Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey | DOI Inspector General
URL: http://powellcenter.usgs.gov/aggregator/categories/1
Page Contact Information: Ask USGS
Page Last Modified: December 19, 2013
Site Team