Greetings from the Powell Center: Your browser is currently running on Internet Explorer (IE) 8 or lower version. To better view this Web site we recommend updating your browser to the most current IE Version.

John Wesley Powell Center for Analysis and Synthesis

Powell Center Products

Operationalizing the telecoupling framework for migratory species using the spatial subsidies approach to examine ecosystem services provided by Mexican free-tailed bats

Powell Center Working Group Products - Tue, 04/17/2018 - 12:42
Drivers of environmental change in one location can have profound effects on ecosystem services and human well-being in distant locations, often across international borders. The telecoupling provides a conceptual framework for describing these interactions-for example, locations can be defined as sending areas (sources of flows of ecosystem services, energy, or information) or receiving areas (recipients of flows). However, the ability to quantify feedbacks between ecosystem change in one area and societal benefits in other areas requires analytical approaches. We use spatial subsidie-an approach developed to measure the degree to which a migratory species’ ability to provide services in one location depends on habitat in another location-as an example of how telecoupling can be operationalized. Using the cotton pest control and ecotourism services of Mexican free-tailed bats as an example, we determined that of the 16 states in the United States and Mexico where the species resides, three states (Texas, New Mexico, and Colorado) are receiving areas, while the rest of the states are sending areas. In addition, the magnitude of spatial subsidy can be used as an indicator of the degree to which different locations are telecoupled to other locations. In this example, the Mexican free-tailed bat ecosystem services to cotton production and ecotourism in Texas and New Mexico are heavily dependent on winter habitat in four states in central and southern Mexico. In sum, spatial subsidies can be used to operationalize the telecoupling conceptual framework by identifying sending and receiving areas, and by indicating the degree to which locations are telecoupled to other locations.

Ecosystem services from transborder migratory species: Implications for conservation governance

Powell Center Working Group Products - Tue, 04/17/2018 - 12:29
This article discusses the conservation challenges of volant migratory transborder species and conservation governance primarily in North America. Many migratory species provide ecosystem service benefits to society. For example, insectivorous bats prey on crop pests and reduce the need for pesticides; birds and insects pollinate food plants; and birds afford recreational opportunities to hunters and birdwatchers. Migration is driven by the seasonal availability of resources; as resources in one area become seasonally scarce, individuals move to locations where resources have become seasonally abundant. The separation of the annual lifecycle means that species management and governance is often fractured across international borders. Because migratory species depend on habitat in different locations, their ability to provide ecosystem services in one area depends on the spatial subsidies, or support, provided by habitat and ecological processes in other areas. This creates telecouplings, or interconnections across geographic space, of areas such that impacts to the habitat of a migratory species in one location will affect the benefits enjoyed by people in other locations. Information about telecoupling and spatial subsidies can be used to craft new governance arrangements such as Payment for Ecosystem Services programs that target specific stakeholder groups and locations. We illustrate these challenges and opportunities with three North American case studies: the Duck Stamp Program, Mexican free-tailed bats (Tadarida brasiliensis mexicana), and monarch butterflies (Danaus plexippus).

Recreation economics to inform migratory species conservation: Case study of the northern pintail.

Powell Center Working Group Products - Tue, 04/17/2018 - 12:12
Quantification of the economic value provided by migratory species can aid in targeting management efforts and funding to locations yielding the greatest benefits to society and species conservation. Here we illustrate a key step in this process by estimating hunting and birding values of the northern pintail (Anas acuta) within primary breeding and wintering habitats used during the species' annual migratory cycle in North America. We used published information on user expenditures and net economic values (consumer surplus) for recreational viewing and hunting to determine the economic value of pintail-based recreation in three primary breeding areas and two primary wintering areas. Summed expenditures and consumer surplus for northern pintail viewing were annually valued at $70M, and annual sport hunting totaled $31M (2014 USD). Expenditures for viewing ($42M) were more than twice as high than those for hunting ($18M). Estimates of consumer surplus, defined as the amount consumers are willing to pay above their current expenditures, were $15M greater for viewing ($28M) than for hunting ($13M). We discovered substantial annual consumer surplus ($41M) available for pintail conservation from birders and hunters. We also found spatial differences in economic value among the primary regions used by pintails, with viewing generally valued more in breeding regions than in wintering regions and the reverse being true for hunting. The economic value of pintail-based recreation in the Western wintering region ($26M) exceeded that in any other region by at least a factor of three. Our approach of developing regionally explicit economic values can be extended to other taxonomic groups, and is particularly suitable for migratory game birds because of the availability of large amounts of data. When combined with habitat-linked population models, regionally explicit values could inform development of more effective conservation finance and policy mechanisms to enhance environmental management and societal benefits across the geographically dispersed areas used by migratory species.

Beyond clay: towards an improved set of variables for predicting soil organic matter content

Powell Center Working Group Products - Tue, 02/06/2018 - 13:21
Abstract

Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.

The metabolic regimes of flowing waters

Powell Center Working Group Products - Mon, 01/29/2018 - 15:25
Abstract

The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classifying and modeling the current and future metabolic regimes of flowing waters.

Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey | DOI Inspector General
URL: http://powellcenter.usgs.gov/aggregator/categories/1
Page Contact Information: Ask USGS
Page Last Modified: December 19, 2013
Site Team