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Introduction
Although global food production has been rising, the world still faces a 
major food security challenge. Over one billion people are currently un-
dernourished (Wheeler and Kay, 2010). By the 2050s, the human popula-
tion is projected to grow to 9.1 billion. Over three-quarters of these people 
will be living in developing countries, in regions that already lack the ca-
pacity to feed their populations. Under current agricultural practices, the 
increased demand for food would require in excess of one billion hectares 
of new cropland, nearly equivalent to the land area of the United States, 
and would lead to signifi cant increases in greenhouse gases (Tillman et al., 
2011). Since climate is the primary determinant of agricultural productiv-
ity, changes to it will infl uence not only crop yields, but also hydrologic 
balances and supplies of inputs to managed farming systems, and may 
lead to a shift in the geographic location of some crops. Therefore, not 
only must crop productivity (yield per unit of land; kg/m2) increase, but 
water productivity (yield per unit of water or “crop per drop”; kg/m3) must 
increase as well in order to feed a burgeoning population against a back-
drop of changing dietary consumption patterns, a changing climate and 
the growing scarcity of water and land (Beddington, 2010). The impact 
from these changes will affect the viability of both dryland subsistence 

and irrigated commodity food production (Knox, et al., 2010a). Since cli-
mate is a primary determinant of agricultural productivity, any changes 
will infl uence not only crop yields, but also the hydrologic balances, and 
supplies of inputs to managed farming systems as well as potentially 
shifting the geographic location for specifi c crops. Unless concerted and 
collective action is taken, society risks worldwide food shortages, scar-
city of water resources and insuffi cient energy. This has the potential to 
unleash public unrest, cross-border confl icts and migration as people fl ee 
the worst-affected regions to seek refuge in "safe havens", a situation that 
Beddington described  as the “perfect storm” (2010). 

A step toward solution lies in improving the monitoring of croplands us-
ing a means to map them routinely, rapidly, consistently, and with suffi cient 
accuracy (Congalton and Green, 2009). This, in turn, will help determine 
how croplands are used and how they might be better managed to optimize 
the use of resources in food production. We must identify regions where 
there is potential to reduce the "yield gap" by improving water productivity. 

The yield gap — the difference be-
tween potential and actual yield — is 
a widespread problem that constrains 
production in both the developed 
and developing worlds, particularly 
since croplands account for 80 per-
cent of worldwide freshwater extrac-
tions (Licker et al., 2010). Further, 
we must seek to better understand 
the links between food production 
and water scarcity, and the variety 
of impacts that climate change may 
have on food supplies (Knox et al., 
2010b). In some countries, cropped 
areas available for food production 
have begun to decline in response 
to increased demand for bio-fuel production, encroachment from urban-
ization, land degradation from mismanagement, and enhanced interest in 
environmental protection. Emerging insistence on biodiversity conserva-
tion and carbon sequestration have also put a cap on possible expansion of 
cropland into areas such as forests and rangelands. 

Given these complexities, together with the need to improve our under-
standing of the range of options and the global scale of the overarching is-
sues, remote sensing will play an increasingly signifi cant role in supporting 
both data collection and policy formulation. This will include the creation 
of a framework of best practices and an advanced global geospatial infor-
mation system on cropland and water use. Such a system would need to be 
consistent among nations and regions. It would provide information on is-
sues such as the composition and location of cropping, number of crops per 
year, rotations, crop health and vigor, irrigation status, fl ood and drought 
risk, water demand, and crop and water productivity. Such a global system 
can be established by fusing advanced remote sensing data from diverse 
platforms and agencies (e.g., http://wgiss.ceos.org/lsip/satellites_midres1.
shtml; http://www.ceos-cove.org/index.php) in combination with national 
statistics; secondary data, such as elevation, slope, soils, temperature, and 
precipitation; and, systematic collection of fi eld level observations.

This paper provides a brief overview of the state of the art by which 
remote sensing technologies can encompass global cropland assessment 
and the role these technologies can play in the new food security para-
digm. We will highlight the main areas of progress and then identify the 
key challenges that need to be addressed.

ASSESSING FUTURE RISKS TO AGRICULTURAL PRODUCTIVITY, 
WATER RESOURCES AND FOOD SECURITY: 
HOW CAN REMOTE SENSING HELP?

to increased demand for bio-fuel production, encroachment from urban-

ASSESSING FUTURE RISKS TO AGRICULTURAL PRODUCTIVITY, 

“Under current agricultural practices, the increased demand 
for food would require in excess of one billion hectares 
(~ equivalent to the land area of the United States) of new 
cropland to feed the 9 billion plus by year 2050.”
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State of the Art in Global Cropland Assessment
There are currently five major global cropland maps: (1) Thenkabail et al. 
(2009a,b, 2011), (2) Ramankutty et al. (1998), (3) Goldewijk et al. (2011), 
(4) Portmann et al. (2009)\Siebert and Döll (2009), and (5) Pittman et al. 
(2010). These studies have all estimated total worldwide cropland area to be 
around 1.5 billion hectares, using the year 2000 as a baseline. Throughout 
the Earth, cropland areas have increased from around 265 Mha in 1700 to 
around 1,471 Mha in 1990, while pasture area has increased over sixfold, 
from 524 to 3,451 Mha (Foley et al., 2011). Ramankutty and Foley (1999) 
estimated cropland and pasture to represent about 36 percent of the world's 
terrestrial surface (148,940,000 km2). According to a number of studies, 
roughly 12 percent of the terrestrial area is cropland and 24 percent pasture. 
Several studies (Goldewijk, et al., 2011; Portmann, et al., 2008; Ramankutty, 
et al., 2008) integrated agricultural statistics and census data from national 
systems using spatial mapping technologies that involved geographic in-
formation systems (GIS) to derive global cropland maps. Pittman et al. 
(2010) used the United States Department of Agriculture (USDA) Foreign 
Agriculture Service (FAS) production, supply, and distribution (PSD) da-
tabase to produce discrete cropland/non-cropland maps. Thenkabail and 
others (2009a,b, 2011) produced the first remote sensing-based worldwide 

irrigated and rainfed cropland maps and statistics for 198 countries through 
multi-sensor remote sensing data fusion together with secondary and in-
situ data. They accomplished this (Thenkabail et al., 2009a, 2009b, 2011) 
by taking advantage of (Thenkabail et al., 2010): (a) free access to well 
calibrated and guaranteed data such as Landsat and Moderate Resolution 
Imaging Spectroradiometer (MODIS); (b) frequent temporal coverage of 
data such as MODIS, backed by high resolution Landsat data; (c) free ac-
cess to high quality secondary data such as long-term precipitation, evapo-
transpiration, surface temperature, soils, and the Global Digital Elevation 
Model (GDEM); (d) global coverage of the data; (e) web-access to data and 
faster downloading; (f) advances in computer technology; and (g) advances 
in processing.

Figure 1 shows the spatial distribution of Earth’s agricultural cropland 
areas generated for the five major crops (wheat, rice, corn, barley and soy-
beans) produced using parcel-based inventory data (Monfreda et al., 2008; 
Portmann et al., 2008; Ramankutty et al., 2008) overlaid with the global 
irrigated and rainfed cropland area map produced using remote sensing data 
by the International Water Management Institute (IWMI) (Thenkabail et 
al., 2009a,b, 2011). These five crops account for about 60 percent of world-
wide cropland areas. Although there is good general agreement, the precise 
location of these crops is only approximate due to the coarse resolution 
(approx. 1 to 10 km2) and fractional representation of the crop data in each 
grid cell of all maps, since each pixel may contain from 1 to 100 percent 
of a crop. The IWMI cropland product (Thenkabail et al., 2009a, b, 2011) 
is at approximately one km2 resolution. Every pixel has a certain fractional 
percentage of a crop (typically above 50 percent). The two maps were resa-
mpled to one km2 for seamless spatial analysis. 

The existing cropland datasets also differ from one another due to in-
herent uncertainties in establishing the precise location of croplands, the 
watering method (whether rainfed, fully irrigated, or with supplemental ir-
rigation), cropping intensities, crop types and/or dominance, and their char-
acteristics (e.g., crop or water productivity measures such as biomass, yield, 

or water use). Improved knowledge of the uncertainties (see Congalton and 
Green, 2009) in these estimates will lead to a collection of highly accurate 
spatial data products to support crop modeling, food security analysis, and 
decision making. 

One important variable affecting global food production is agricultural 
water use. Figure 2 shows the estimated demand for agricultural water us-
ing data by Gleick (2011), at country scale. Worldwide, humans use about 
4,000 km3 per year of fresh water, of which about 80 percent is used by ag-
riculture for food crop production. However, other estimates of Worldwide 
agricultural cropland water use vary between 6,685 to 7,500 km3 per year 
(Siebert and Döll, 2008), of which around 4,586 km3 per year is by rain-
fed croplands (green water use) and the rest by irrigated croplands (blue 
water use) (Thenkabail et al., 2010). Irrigated areas use about 2,099 km3 
yr−1 (1,180 km3 per year of blue water and the rest from rain that falls over 
irrigated croplands; Siebert and Döll, 2008). Four countries account for the 
overwhelming proportion of total agricultural water extraction (India 684 
km3 yr-1, China 364 km3 yr-1, the USA 197 km3 yr-1, and Pakistan 172 km3 yr-

1; Figure 2). Agricultural water use depends on many factors; these include 
crop type, cropped area, irrigated area, irrigation efficiency, local agrocli-
mate, geographic location, management practices, and evapotranspiration 
(ETcrop). However, the routine mapping of crop types typically applies an av-
erage water consumption value only somewhat modulated by management 
and geographic context. High resolution mapping sufficient to establish 
more accurate water use characteristics at global scales is required, and this 
is quite complex. Hence, initially the predominant focus of Earth’s cropland 
mapping should focus on 18 dominant crop types that collectively account 
for 85 percent of the global high-resolution cropland area (Table 1). This 
recommendation was made by the U.S. Geological Survey (USGS) work-
ing group on global croplands (https://powellcenter.usgs.gov/globalcrop-
landwater/) at  the John Wesley Powell Center for Analysis and Synthesis 
at their 2011 meeting in Fort Collins, Colorado, USA: http://powellcenter.
usgs.gov//current_projects.php#GlobalCroplandMembers. 
Table 1. Area and relative proportion of the 18 major crop characteristics. 
[Source: Monfreda et al., 2008].

Crop Area (1,000 km2) Relative Proportion (%)
Wheat 4,028 22
Corn 2,271 13
Rice 1,956 11
Barley 1,580 9
Soybeans 927 5
Pulses 794 4
Cotton 534 3
Potatoes 501 3
Sorghum 501 3
Millet 331 2
Sunflower 290 2
Rye 288 2
Rapeseed/canola 283 2
Sugar cane 265 1
Groundnuts/peanuts 247 1
Cassava 235 1
Sugar beets 154 1
Oil palm fruit 72 <1
Total of major 18 crops 15,256 85
Others 2,664 15
Total cropland 17,920 100

“To feed the World in the 21st Century, not only must crop 
productivity (yield per unit of land; kg/m2) increase, but water 
productivity (yield per unit of water or “crop per drop”; kg/m3) 
as well.”
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Components of Global Cropland Mapping Using 
Remote Sensing
Remotely sensed data provides the only source of information to make a 
complex global agricultural monitoring system feasible by being consis-
tent, repeatable, routine, rapid, and scalable. One way forward in cropland 
mapping will be to use satellite data with a resolution that matches the 
spatial heterogeneity of the landscape (i.e., 30 meters or better, such as 
from Landsat) along with more frequent observations (e.g., daily cover-
age with much coarser spatial resolution from sensors such as the MODIS 
250m to 500m data). To these add secondary data (e.g., elevation, pre-
cipitation, evapotranspiration (ET), and temperature), national and sub-
national statistics, and a large volume of in-situ observations that are spa-
tially well distributed. The collection and fusion of these data will allow 
production of cropland area statistics and crop productivity data ranging 
from pixel to administrative unit level, both routinely and rapidly, using 
automated cropland classification algorithms (or ACCAs) as introduced 
by Thenkabail et al. (in review).

Figure 1. Spatial distribution of the five major global cropland types (wheat, rice, corn, barley and soybeans; which occupy 60% of 
all global cropland areas). The map is produced by overlying the five dominant crops of the world produced by Ramankutty et al. 
(2008), Monfreda et al. (2008), and Portman et al. (2009) over the remote sensing derived global irrigated and rainfed cropland area 
map of the International Water Management Institute (IWMI; Thenkabail et al., 2009a, 2009b, 2011).

and advanced software; and, (h) advances in image processing. Heretofore, 
most remote sensing work over large areas produced land use/land cover 
maps (LULC) (Loveland et al., 2000) but not thematic maps that specifi-
cally delineate a single category, such as croplands. 

Development of a Historical Understanding of Croplands 
Through a Remote Sensing Pathfinder Dataset
The green revolution era occurred roughly between 1960 and 2000. It is 
interesting to examine the rapid expansion and intensification of glob-
al croplands during this period. Worldwide coverage of remote sens-
ing data for the early years (1960s) of the green revolution is sporadic. 
Earth observation from satellites began when the Soviet Union launched 
Sputnik 1 in 1957, followed by NASA's Television Infrared Observation 
Satellite (TIROS-1), launched on 1 April 1960. Systematic global Earth 
observation data acquisition began with NOAA’s Very High Resolution 
Radiometer (VHRR) and Advanced VHRR (AVHRR) in 1972, ERTS 
(Earth Resources Technology Satellites, later Landsat) also in 1972, SPOT 
(France) in 1986, and IRS (India) in 1988. 

The specific remote sensing advances (Thenkabail et al., 2010) that 
enable global cropland mapping and generation of their statistics include 
these factors: (a) free access to well calibrated data such as Landsat and 
MODIS; (b) frequent temporal coverage as provided by MODIS, NPOESS 
Preparatory Project Visible Infrared Imager Radiometer Suite (NPP VIIRS), 
and Satellite Pour l’Observation de la Terre (SPOT) Vegetation; (c) frequent 
sampling of large portions of the world from sensors matching the 30–100 
m landscape scale (e.g., Landsat, Indian Remote Sensing Satellites (IRS), 
SPOT) and very high resolution sensors from the sub-meter to <5m range 
(e.g., RapidEye, IKONOS, QuickBird, GeoEye) from different space agen-
cies of the world; (d) free access to high quality secondary data such as 
long-term precipitation, evapotranspiration, surface temperature, soils in-
formation, and Global Digital Elevation Model (GDEM) data; (e) global 
coverage; (f) web-access for immediate data access from anywhere in the 
world; (g) advances in computer technology, including processing speed 

However, the availability of high quality, well calibrated remote sensing 
pathfinder datasets allows scientists to develop a global inventory of histori-
cal cropland information dating back to the 1970s. There are still problems 
with calibration of data from certain sensors (e.g., Landsat MSS), but work 
is underway to address them. The sources of these datasets include AVHRR 
Global Inventory Modeling and Mapping Studies (GIMMS; 1981-2006), 
MODIS time-series (2000-present), and Landsat Global Land Survey nomi-
nal 30 m mosaics for the 1970s, 1980s, 1990s, 2000s, a mid-decadal 2005, 
and 2010s. These data will help build an inventory of historical agricultural 
development by providing information on such factors as which areas have 
switched from rainfed to irrigated production (both full and supplemental), 
and non-cropped to cropped (and vice versa). A complete history will re-
quire systematic analysis of remotely sensed data as well as a compilation 
of all routinely populated cropland databases from the agricultural depart-
ments of all countries throughout the world.

continued on page 776
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Cropland Monitoring in the 21st Century
The emphasis on global crop-specific monitoring in the 21st century will in-
volve fusion of data collected by a wide array of satellites and sensors from nu-
merous national space agencies. This will allow us to capture phenology along 
with crop types, growth stages, their source of water (irrigated or rainfed), and 
their productivity. These satellites can be categorized as follows: (a) coarse 
spatial resolution sensors (>100m) with frequent, even daily coverage of the 
world (e.g., AVHRR, MODIS, and Visible Infrared Imager Radiometer Suite 
VIIRS, NASA); (b) high resolution (30–100m) with less frequent coverage of 
the world, about once in 8 to 16 days, (e.g., Landsat, RESOURCESAT, SPOT, 
and China-Brazil Earth Resource Satellite-CBERS); (c) very high resolution 
(sub-meter to <30 m) with infrequent coverage of the world, that is, based 
on need, (e.g., IKONOS, QuickBird, GeoEye, RapidEye, WorldView-2); (d) 
non-optical sensors, such as Radarsat, and Japanese Earth Resource Satellite 

(JERS) Synthetic Aperture Radar (SAR); and, (e) emerging microsatellites 
(e.g., UK pioneered satellites by Surrey Space Center for emerging space 
nations — KITSAT for Korea, PoSAT for Portugal, BADR for Pakistan, 
TMSAT for South Africa, plus DMC International Imaging (DMCii) disaster 
monitoring constellation). An excellent catalogue of these satellites and sen-
sors is available at http://wgiss.ceos.org/lsip/satellites_midres1.shtml or http://
www.ceos-cove.org/index.php. Cropland monitoring in the 21st century will 
involve using data fusion or combination (Thenkabail et al., 2011) from these 
sensors, taking advantage of the advances in components of global cropland 
mapping using remote sensing (previous section), gaining a historical per-
spective using pathfinder datasets (previous sub-section), applying data fusion 
approaches (Thenkabail et al., 2009a, b), and developing automated cropland 
algorithms (next section).

Automated Methods for Cropland Mapping Globally
There is a growing body of scientific evidence on mapping of both irri-
gated and rainfed cropland based on classification and analysis of remotely 
sensed data (Friedl et al., 2002; Hansen et al., 2002; Loveland et al., 2000; 
Ozdogan and Woodcock, 2006; Thenkabail et al., 2009a,b; Wardlow and 
Egbert, 2008; Wardlow et al., 2006; Wardlow et al., 2007; Xiao et al., 
2006). Some of the methods used include: (a) spectral matching techniques 
(SMTs); (b) decision tree algorithms; (c) tasseled cap brightness-greenness-
wetness transformation; (d) space-time spiral curves; (e) Change Vector 
Analysis (CVA); (f) phenology; and, (g) fusion of climate data with remote-
ly sensed observations. Coincidentally, these methods also allow sub-pixel 
calculation of the areas. Most of these approaches rely extensively on hu-
man interpretation, making the process resource-intensive, time consuming, 
and difficult to repeat for both space and frequency. 

There is a growing need for improved data on cropland mapping, par-
ticularly over large areas —countries or regions such as river basins — 
in order to address food and water security issues. Effective operational 
cropland mapping must be automated, accurate, and be able to provide 
maps, statistics, and crop characteristics quickly, that is, maps should be 
produced within a few hours or days, repeatedly over space and time. 

Fully automated methods do not yet exist, especially over large areas. 
The best methods are semi-automated, require substantial human inter-
vention, and include major uncertainties when working with independent 
datasets or when applied to areas away from locations for which they were 
originally developed. These methods include (Thenkabail et al., in re-
view): (a) Spectral Matching Techniques (SMTs), (b) Ensemble of Machine 
Learning Algorithms (EMLAs) (e.g., decision trees, neural networks); and, 
(c) Classification and Regression Trees (CART). The principle of SMTs 
(Thenkabail et al., 2007) is to match the shape and/or magnitude of the 
Normalized Difference Vegetation Index (NDVI) or similar index or band 
reflectivity to an ideal or target spectrum (pure class or “end-member”). 
Thenkabail et al. (2007) advocated four key SMTs: (1) Spectral Correlation 
Similarity (SCS) – a measure of shape; (2) Spectral Similarity Value (SSV) 

Figure 2. Country-wise agricultural crop water use in km3/yr. In India, China, and Pakistan as a result of double and triple cropping 
that are irrigated, the water use is dominated by irrigated croplands (blue water use). In USA, the water use is dominated by rainfed 
croplands (green water use). Data source: Gleick (2011).

“A step toward ensuring food security in the 21st Century 
lies in improving the monitoring of croplands using a 
means to map them routinely, rapidly, consistently, and with 
sufficient accuracy.”

continued from page 775
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– a measure of both shape and magnitude; (3) Euclidian Distance Similarity 
(EDS) – a distance measurement; and, (4) Modified Spectral Angle 
Similarity (MSAS) – a hyper angle measurement. EMLAs include decision 
tree algorithms and neural networks (Chan and Paelinckx, 2008), which are 
computationally fast to implement. CART is a data mining decision-tree 
(DT) that takes spectral and ancillary data and recursively splits it until end 
points or terminal nodes are reached (Zheng et al., 2009). 

All these methods are powerful, and have shown potential to be auto-
mated. Nevertheless, implementation of these algorithms is limited due to 
complexity of methods, inability to demonstrate repeatability and the need 
for substantial expert input to train algorithms to produce accurate cropland 
mapping over time. Furthermore, it is neces-
sary to create new perspectives and concepts in 
order to develop simple algorithms that are au-
tomated and can generate instant and accurate 
computations of cropland areas and their char-
acteristics over large areas repeatedly season 
after season, year after year. A recent advance 
in automating the cropland classification pro-
cess has been proposed by Thenkabail et al., (in 
review), in what they define as an Automated 
Cropland Classification Algorithm (ACCA). 

The process of creating an ACCA involves 
three steps. First, an accurate cropland truth lay-
er (CTL) is obtained from other reliable sources 
(e.g., National Systems such as USDA cropland 
data layer) or  generated using a megafile data 
cube (MFDC) validated by in-situ observations. 
The MFDC fuses data from multiple sources: 
first, Landsat and MODIS throughout the grow-
ing season, monthly composites, for example. 
Next, the MFDC is linked with secondary data 
such as Shuttle Radar Topography Mission 
(SRTM) elevation, slopes, precipitation, tem-
perature, evapotranspiration, and in-situ data 
that can include ground observations as well as 
very high resolution (sub-meter to 5 meter) im-
age data. This step involves understanding agri-
cultural cropland dynamics and mapping these 
lands through knowledge-capture techniques 
such as: (a) identifying croplands versus non-
croplands and crop type or dominance based 
on spectral matching techniques, decision trees, 
Tasseled Cap bi-spectral plots, and very high res-
olution imagery; (b) determining irrigation status 
based on temporal characteristics (e.g. NDVI), 
water use by crops, secondary data (elevation, 
precipitation, temperature), and identification 
of irrigation structure (e.g., canals and wells); 
(c) establishing which croplands are large scale 
(contiguous) versus small scale (fragmented); 
(d) characterizing cropping intensities as single, 
double, triple, or continuous cropping; (e) in-
terpreting MODIS NDVI temporal bi-spectral 
plots to identify and label classes; and, (f) using 
in-situ data from very high resolution imagery, 
field-plot data, and national statistics. The pro-
cess of generating cropland truth layers (CTL) 

Figure 3. Sample rules\codes in an automated cropland classification algorithm (ACCA) ,written and 
illustrated here for the Country of Tajikistan, that makes use of fusion of multi-sensor data along with 
secondary data. Source: Thenkabail et al., in review.

varies widely and can be found in numerous studies (Ozdogan and Gutman, 
2008; Thenkabail et al., 2011; Wardlow and Egbert, 2008). The second step of 
ACCA involves writing a series of rules\codes (e.g., Figure 3) using the same 
MFDC as the one used to create CTL. When the ACCA algorithm is run on 
MFDC, it will produce an ACCA derived cropland layer (ACL) that should 
replicate (or come very close) to the CTL. This is a complex process of cod-
ing, refining, running, revising, re-coding and re-running the ACCA, which is 
a rule-based algorithm. For a country or a river basin, one may need hundreds 
of rules\codes like those illustrated in Figure 3. Hence, many iterations are re-
quired until the ACL converges perfectly (or nearly so) with CTL. A particular 
ACCA rule or a set of rules may successfully replicate croplands and/or their 
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characteristics (e.g., irrigated versus rainfed) for a portion of the CTL. If the 
ACCA rule does not perfectly separate cropland areas and/or their characteris-
tics in the CTL, the rules are refined and re-run until we obtain a perfect or near 
perfect match between the ACL and the CTL. Subsequent ACCA rules will 
then be directed at replicating the remaining parts of the CTL until such rules, 
which may be numerous, successfully separate all of the croplands and their 
characteristics seen in the CTL. Once the ACCA is successfully established, 
we now run the ACCA on independent MDFCs (e.g., from different years) for 
the same area. Recent research by Thenkabail et al. (in review) and Wu and 
Thenkabail (in preparation) demonstrated that the ACL successfully mapped 
croplands of an independent years for Tajikistan and California, typically, 
with over 90 percent overall accuracy. The ACL, for example, was produced 
within 30 minutes on a desktop Dell Precision T7400 for the entire coun-
try of Tajikistan once the MFDC for a year was composed and ready. Thus 
the ACCA concept is seamless over the entire country. It is extremely rapid; 
an ACL can be produced in hours, even minutes, depending on the scope of 
the area and the computing power available. Moreover, it is repeatable year 
after year using a consistent set of multiple sensor data fusion organized in 
a MFDC. ACCA is distinct from all other classification systems because it 
produces the ACL without user intervention, it works on independent MFDC 
datasets that are constituted to accurately resemble the MFDC that was used 
to develop the ACCA algorithm, and it typically provides output within a few 
minutes or hours. In spite of this hands-off approach, the accuracy of ACL’s 
for independent datasets is very high (Thenkabail et al., in review; and Wu 
and Thenkabail, in preparation). An ACCA algorithm along with sample data-
sets are available to the public over the USGS Powell Center web site on 
global croplands: https://powellcenter.usgs.gov/globalcroplandwater/; http://
powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract . 

Remote Sensing – Opportunities for Progress and  
Challenges Ahead
Apart from the advances made in remote sensing of global croplands (pre-
vious sections), further advances in the application of remote sensing will 
require additional components:

Develop the temporal history of crops:•  Cropland phenology, cropping 
intensity, and crop calendars are best studied using a time-series of 
remotely sensed observations. A first example is the one illustrated 
for South Asia (Figure 4; adopted from Gumma et al., 2011) us-
ing MODIS time-series data for rice-dominant cropped areas. This 
will require a cropland knowledge base from precise locations. The 
in-situ data (as illustrated for several points in Figure 4) need to be 
collected routinely from large numbers of spatially well-distributed 
points with precisely known coordinates in order to capture cropland 
knowledge. Detailed field plot data will help establish cropping pat-
terns, calendars, intensity and types, as well as productivity or yield 
(Dheeravath et al., 2010). A second example is the month by month 
dynamics of the NOAA AVHRR NDVI (0.1 degree) of the irrigated 
areas of the World illustrated for the year 2000 (Figure 5). 

As we progress from one month to other we see the NDVI dynamics 
of different parts of the world changing based on cropping phenology. 
For example, in the Ganges river basin crops growing season peaks 
during August-September (Season 1; Kharif) and February-March 
(Season 2; Rabi) (Figure 5). In Argentina and Egypt’s Nile Basin the 
crops peak during January through March (Figure 5). In the heavily ir-
rigated Nile Basin a second peak occurs during July and August. This 
information can then be entered into automated and semi-automated 
cropland classification algorithms (previous section). 

Capture spectral signatures: • 
Progress in remote sensing of ag-
ricultural croplands will require 
that we model biophysical and 
biochemical properties of crops 
and their productivities with 
much greater accuracy than that 
achieved to date. This will require 
construction of a hyperspectral 
crop library as seen in Figure 6. 
It must document detailed spec-
tral characterization of crops 
throughout the growing season in 
agricultural systems worldwide. 
Hyperspectral narrow bands 
(HNBs) and hyperspectral vegeta-
tion indices (HVIs), that are com-
puted based on specific portions 
of the spectrum (Thenkabail and 
Gumma,  2012. Thenkabail et al., 
2002) will help us model various 
crop biophysical and biochemi-
cal parameters with increasing 
confidence. These parameters 
may include biomass, leaf area 
index, yield, nitrogen, carotenoid, 
anthocyanins, and plant water 
content (a detailed discussion 
of these is in Thenkabail et al., 

Figure 4. Crop phenologies and intensities studied using time-series remotely sensed data illustrated for rice 
crop in South Asia. A clear and deep understanding of phenologies and intensities will require us to develop 
a temporal (e.g., this figure) and spectral (e.g., Figure 5) knowledge base of each crop in different agro-
ecosystems of the world leading to mapping distinct classes within a crop, which in turn will lead to accurate 
assessments of green water use (rainfed croplands) and blue water use (irrigated croplands). [adopted from 
Gumma et al., 2011].
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2011 , and Thenkabail and Gumma, 2012). The HNBs and HVIs 
will also advance crop classification accuracies and improve crop 
and water productivity models. Further, the collection of spectra 
will act as a signature bank that can be used for future identifica-
tion and labeling of crops and their characteristics at local, regional, 
national, and global levels. Acquisition of hyperspectral crop signa-
ture data (e.g., Figure 6) will become more routine with the launch 
of the Hyperspectral Infrared Imager (HyspIRI), which will provide 
imaging spectroscopy data covering the entire world and acquired 
every 19 days. 

Importance of Accurate and Routine Cropland 
Mapping in Crop Water use Assessments
There are significant advances in the last two decades in crop water use as-
sessments from actual evapotranspiration (ETactual) modeling using remote 
sensing data and methods (Zwart, 2010). By helping to monitor agricultur-
al water removal (evapotranspiration), these assessments can help reduce 
the waste of water from agricultural activities, reduce over-exploitation 
of aquifers, and optimize the scheduling of irrigation. In any case, the ac-
curacy of crop water use assessments relies on accurate cropland mapping 
including types, growth stages, and crop health. Therefore, the advances 
in cropland mapping discussed in this paper would also lead to improved 
estimates of water use on croplands and help develop policies to grow 
crops where it is most efficient in terms of water availability. This will be 
of great importance given that nearly 70 to 80 percent of all human water 
use on Earth is in the agriculture sector (Thenkabail et al., 2010). Detailed 
assessments of current and future changes in cropland will help us deter-
mine the water "footprint" of agricultural production and its dependence 
on "blue" and "green" sources. Blue water is associated with crop produc-
tion under irrigation with water obtained from lakes, reservoirs, rivers and 
from the groundwater (saturated zone). Green water is associated with 

crop production from rainfall and constitutes 70 percent of the water con-
sumed by croplands. These definitions have received widespread atten-
tion, particularly in policy discussions regarding water scarcity and food 
security. However, the real challenge lies in reconciling the spatial and 
temporal distributions of consumptive water use for agriculture with the 
availability of local water resources, and then identifying opportunities to 
reduce the environmental impact of agricultural demand. 

Cropland Web Resources
There is an increasing volume of literature (published and gray), data and 
information on global cropland mapping. A list of important sources is as 
follows:

https://powellcenter.usgs.gov/globalcroplandwater/•	
http://www.iwmigiam.org •	
http://www.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html•	
http://www.sage.wisc.edu/mapsdatamodels.html •	
http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm •	
http://www.fao.org/nr/water/aquastat/main/index.stm•	
http://www.nass.usda.gov/research/Cropland/SARS1a.htm•	
http://www.pecad.fas.usda.gov/cropexplorer/datasources.cfm•	
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/MIRCA/index.html•	
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/GCWM/index.html•	
http://gcmd.nasa.gov/records/GCMD_SAGE_MAJORCROPS.html•	
http://www.mdpi.com/journal/remotesensing/special_issues/croplands/ •	
http://www.earthobservations.org/cop_ag_gams.shtml•	
http://powellcenter.usgs.gov/current_projects.•	
php#GlobalCroplandsAbstract 
http://www.earthobservations.org/cop_ag_gams.shtml•	
http://www.ceos.org/•	
http://sharaku.eorc.jaxa.jp/GSMaP/index.htm•	
http://kuroshio.eorc.jaxa.jp/JASMES/index.html•	

Figure 6. Hyperspectral signature bank of world crops. The initial goal of a global cropland monitoring system should consist of 
developing hyperspectral signature bank of major world crops (e.g., this figure) along with crop phenologies (e.g., Figure 4) in order 
to: (a) establish improved models of crop biophysical and biochemical quantities, (b) increase crop classification accuracies, and (c) 
produce accurate crop and water productivity models. The six leading world crops (Table 1) cover 64% of the global cropland areas. 
Sample hyperspectral signatures of these six world crops are illustrated in the figure. The background image is irrigated and rainfed 
croplands of the world (Thenkabail et al., 2011, 2009a, 2009b).
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Summary
This paper emphasizes the importance of remote sensing and continued 
research about ways to use its assets in global agricultural cropland map-
ping and water use evaluation. Current cropland map products are derived 
from coarse resolution remotely sensed data and traditional classification 
methods that require substantial human involvement. We have discussed 
the advances and developmental needs of semi-automated and automated 
classification algorithms in routine, rapid, and accurate mapping of global 
croplands and their characteristics. Advances in global cropland mapping 
will require data fusion and\or combination techniques from multiple 
satellite sensors, secondary data sources, and a large and systematic col-
lection of in-situ information, including temporal phenologies and hyper-

spectral signatures. As Beddington (2010) stresses, the fundamental issues 
for policy makers and scientists are whether by the year 2050 over nine 
billion people can be fed equitably, healthily, and sustainably and how 
sound management can make water use more sustainable as a growing 
population moves up from poverty. In this context, the role of remote sens-
ing is clear. There is an unequivocal need to provide a more systematic 
and integrated approach to global cropland mapping to support a range of 
initiatives, including assessments of crop productivity, helping to identify 
food security "hotspots" of vulnerability and resiliency, assessing the ag-
ricultural risks due to climate change and quantifying agricultural water 
demand.
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